Superposition Formulas and Evolution Behaviors of Multi-Solutions to the (3+1)-Dimensional Generalized Shallow Water Wave-like Equation

نویسندگان

چکیده

The superposition formulas of multi-solutions to the (3+1)-dimensional generalized shallow water wave-like Equation (GSWWLE) are proposed. There arbitrary test functions in mixed solutions and interaction solutions, we sum any N terms. By freely selecting positive integer N, have obtained abundant for GSWWLE. First, introduced new between two multi-kink solitons, were through symbolic computation. Next, constructed multi-localized wave which N-even power functions. Finally, novel multi-arbitrary function GSWWLE obtained. evolution behaviors shown 3D, contour density plots. received results immensely enriched exact available literature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact Solutions of the Nonlinear Generalized Shallow Water Wave Equation

Submitted: Nov 12, 2013; Accepted: Dec 18, 2013; Published: Dec 22, 2013 Abstract: In this article, we have employed an enhanced (G′/G)-expansion method to find the exact solutions first and then the solitary wave solutions of the nonlinear generalized shallow water wave equation. Here we have derived solitons, singular solitons and periodic wave solutions through the enhanced (G′/G)-expansion ...

متن کامل

The Exact Rational Solutions to a Shallow Water Wave-Like Equation by Generalized Bilinear Method

A Shallow Water Wave-like nonlinear differential equation is considered by using the generalized bilinear equation with the generalized bilinear derivatives 3,x D and 3,t D , which possesses the same bilinear form as the standard shallow water wave bilinear equation. By symbolic computation, four presented classes of rational solutions contain all rational solutions to the resulting Shallow Wat...

متن کامل

Solitary Wave solutions to the (3+1)-dimensional Jimbo Miwa equation

The homogeneous balance method can be used to construct exact traveling wave solutions of nonlinear partial differential equations. In this paper, this method is used to construct new soliton solutions of the (3+1) Jimbo--Miwa equation.

متن کامل

The classification of traveling wave solutions and superposition of multi-solutions to Camassa-Holm equation with dispersion

Under the traveling wave transformation, Camassa-Holm equation with dispersion is reduced to an integrable ODE whose general solution can be obtained using the trick of one-parameter group. Furthermore combining complete discrimination system for polynomial, the classifications of all single traveling wave solutions to the Camassa-Holm equation with dispersion is obtained. In particular, an aff...

متن کامل

New Traveling Wave Solutions by the Extended Generalized Riccati Equation Mapping Method of the (2+1)-Dimensional Evolution Equation

The generalized Riccati equation mapping is extended with the basic G′/G -expansion method which is powerful and straightforward mathematical tool for solving nonlinear partial differential equations. In this paper, we construct twenty-seven traveling wave solutions for the 2 1 -dimensional modified Zakharov-Kuznetsov equation by applying this method. Further, the auxiliary equation G′ η w uG η...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2023

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math11081966